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Operator Theory

1. Obtain the spectral decomposition of the following matrices, that is, write
them as unitary conjugates of diagonal matrices and also, write them as
linear combinations of projections.

M =

(
5 2
2 5

)
, N =

4 0 0
0 2 2
0 2 2


Solution: We consider the matrix M only. Observe that it is self-adjoint.

First calculate the eigenvalues by

det(M − λI) = 0.

Solving, the above equation we get two different eigenvalues λ = 3 and λ = 7.
We now find the eigenspaces correspoding to these eigenvalues. For λ = 3,
we have:

(M − 3I)u = 0,

where u = (x, y)t, that is the colum. Then we have that the eigenspace
corresponding to 3 is the one dimensional space spanned by the unit vector

e1 =
1√
2

(
1
−1

)
.

Similarly, the eigenspace of λ = 7 is spanned by

e2 =
1√
2

(
1
1

)
.

Hence, M is expressed in the diagonal form as

M =
1√
2

(
1 1
−1 1

)(
3 0
0 7

)
1√
2

(
1 −1
1 1

)
.

Further
M = 3P1 + 7P2,

where P − 1 is the proejction matrix e1e
t
1 and P − 2 is e2e

t
2 (product of the

vector and its transpose) which can be comupted.

1



2. Let X and Y be Banach spaces. Show that the space K(X, Y ) of all
compact operators from X to Y is closed subspace of L(X, Y ), the space of
all bounded operaotrs from X to Y .

Solution: This is a standard theorem. See any book on first course in
functional analysis (Bhatia, Rudin or Kreyzig.)
3. Let F be the algebra of all matrices of the form(

a b
0 a

)
where a, b are complex numbers. Show that F with norm

∥∥(a b
0 a

)∥∥ = |a|+ |b|

is a commutative Banach algebra. Compute the spectrum of an element in
this algebra.

Solution: Banach algebra axioms are easy to verify. Clearly the identy
matrix is the identity element here. It is also a Banach space since if(

an bn
0 an

)
is a Cauchy sequence, then by the above norm defintion, the sequences an
and bn shoud converge to some c and d respectively.. So the Cauchy sequence
converges to (

a b
0 a

)
in the norm of F . It is easy also to see that ‖AB‖ ≤ ‖A‖‖B‖ by straight-
forward calculation.

Now, we compute the spectrum of a member

A =

(
a b
0 a

)
.

If I is the identity operator, then spectrum of A is given by all λ such that(
a− λ b

0 a− λ

)
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has the 0 determinant. Hence the spectrum of A consists of the single scalar
a.
4. Let A be a unital Banach algebra. Let a, b ∈ A.
(i) Show that 1− ab is invertible if and only if 1− ba is so.
(ii) Show the spetrum staifies σ(ab) ∪ {0} = σ(ba) ∪ {0}.

Solution: Let c = (1 − ba)−1. Then a(1 − ba)cb = ab. This gives
1−ab+acb−abacb = 1−ab. Pulling −ab to the left, we get (1−ab)(1+acb) =
1. Similarly (1 + acb)(1− ab) = 1. Hence (i) follows.

For (ii), proceed as follows which is simple. From the above, it follows
that, for λ 6= 0, λ− ab is invertible if and only if λ− ba is invertible. Hence
non-zero elements of σ(ab) and that of σ(ba) are the same. Including, the
zero in both, we get (ii).
5. Let E = C[0, 1] the Banach algebra of all continuous complex functions
on the interival. Show that for the ideal

I = {f ∈ E : f(0) = f(1) = 0},

the quotient space E/I is isomorphic to C2.
Solution: This is a standard result, see a book on functional analysis.

The proof is similar to proving that the kernel of a continuous linear func-
tional is a maximal subspace, i.e. it has co-dimension 1.
6. Let A be a unital commutaive Banach algebra. Define the Gelfand map
for A, and show that it is a contarctive homomorphism.

Solution: Standard result.
7. Consider the set of question 4. Let λ.1 = ab − ba for some a, b ∈ A and
scalar λ. Show that λ is zero.

Solution: We understood that non-zero elements of σ(ab) and σ(ba) are
the same. Now λ.1+ba = ab gives σ(ab) = λ+σ(ba) by the spectral mapping
theorem. This forces λ to be zero.
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